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❑ Basics of deep learning
❑ Parallel deep learning on a GPU 
❑ Distributed deep learning on multiple GPUs
• Data parallelism

-- Zero Redundancy Optimizer 
• Model parallelism

-- Pipeline parallelism
-- Tensor parallelism



Machine learning and deep learning

• Artificial intelligence

• Machine learning 

Statistical algorithms 

Learn from data 

• Supervised learning: 
classification, regression

• Unsupervised learning: clustering

• Deep learning: deep neural network

• Cornerstones of DL: learning algorithms, big data, and high-performance computing.

• Computer vision: Convolutional Neural Network (CNN)

• Natural Language Processing (NLP): Large Language Model (LLM), transformer architecture



Access to ORCD clusters
• Get started

https://orcd-docs.mit.edu/getting-started/

ssh <user>@eofe10.mit.edu

• Log in Engaging

• Get an interactive session and set up environment

srun -t 120 -n 4 --gres=gpu:4 -p mit_normal_gpu --pty bash

module load miniforge/23.11.0-0



Install PyTorch and Deepspeed
• Install PyTorch, Deepspeed, and dependencies.   

conda create -n ds

source activate ds

conda install PyTorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.4 -c PyTorch -c 

nvidia

pip install deepspeed

pip install datasets  tensorboard transformers

pip install fire loguru sh matplotlib



Convolutional Neural Network (CNN)
• CNN for CIFAR10 in PyTorch

• Load training and test datasets: CIFAR10, normalize, using torchvision

• Define a CNN: convolutional layers, nonlinear ReLU activation, pooling, fully connected layers, softmax

https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/


Train a neural network
• Training: adjust the model to minimize a loss function.

• Loss function: cross entropy 

• Train the network on the training data: 

    -- forward + backward + optimize

    -- Backpropagation: computes the gradient of the loss function with respect to the weights, one layer 
at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in 
the chain rule of derivatives.

• Test the network on the test data 

• Optimizer: Stochastic Gradient Descent (SGD)

• Training data: batch or mini-batch (a randomly-picked 
subset of data), epoch (loop over all data). 

Loss function

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

https://en.wikipedia.org/wiki/Stochastic_gradient_descent


Training on a GPU with PyTorch 
• Define a CUDA device

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

• Send the model to the GPU

• Training process:

net.to(device)

for epoch in range(2):  # loop over the dataset multiple times
  running_loss = 0.0
  for i, data in enumerate(trainloader, 0):   # get a batch of data

    # Send a batch of data to the GPU at every step
    inputs, labels = data[0].to(device), data[1].to(device)

    optimizer.zero_grad()     # initialize gradients
    outputs = net(inputs)     # forward pass
    loss = nn.CrossEntropyLoss(outputs, labels) # define loss function 
    loss.backward()           # backward pass
    optimizer.step()          # optimize



What happens under the hood?

What about parallel?

• Training a neural network involves large-scale linear algebra computations.

• When PyTorch is built with CUDA support, it dynamically links to cuDNN and cuBLAS libraries. 

• Linear algebra computations are optimized and parallelized in cuBLAS and thus accelerated on GPUs. 

 

What about other platforms or libraries?

• Tensorflow:  Python or C API, a steeper learning curve, less friendly to researchers, easier with 

Keras integration, better performance optimizations, better for developers. 

• cuDNN:  C API, a bridge between deep-learning platforms and GPUs. 



Distributed Parallelism for Deep Learning

• Distributed on multiple GPUs.

• Data Parallelism

Each GPU gets a different batch of data

Process more data at the same time period.

Universal to different models. The model must fit within GPU memory. 

• Model Parallelism

A model is too big to be stored on a GPU.

Partition the model on multiple GPUs.

Tricky to design and implement.



Data Parallelism

• Each GPU has a copy of the model

• Each GPU gets a different batch of data

• Data sampling is handled by a 

Distributed Sampler

• Concurrently processing multiple 

batches of data

Data Parallel training at large scale may affect model quality



Communication in data parallel

• Gradients on each GPU are 
different because the input data 
is different.

• Gradients from each GPU are 
synchronized before the update.

• Synchronization is done with a 
bucketed Ring-AllReduce 
algorithm. 

• Each GPU gets the averaged 
gradient, then models are 
updated locally.  

• Overlap gradient computation 
with communication so GPUs 
are utilized efficiently.

Scaling with data parallel introduces communication overhead when syncing gradients



Distributed Data Parallel with PyTorch 

• Spawn training processes on multiple GPUs

world_size = torch.cuda.device_count() 

mp.spawn(main, args=(world_size, args.save_every, args.total_epochs, args.batch_size), nprocs=world_size)

model = torch.nn.Linear(20, 1)

https://PyTorch.org/tutorials/beginner/ddp_series_multigpu.html  , https://PyTorch.org/docs/stable/notes/ddp.html   

• Linear neural network

• Set up GPU ID 

• Communication is under the hood. PyTorch calls NCCL.   

self.model = DistributedDataParallel(model, device_ids=[gpu_id])

torch.cuda.set_device(rank)

• Apply DDP 

https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html
https://pytorch.org/docs/stable/notes/ddp.html


Why big models?

• Transformer architecture

   -- Remove the sequential processing 

dependency of RNNs, such as Long Short-

term Memory (LSTM). 

   -- Enable language models to be trained 

with parallelism

• A dramatic increase in model sizes after 

the birth of Transformer.



Memory requirements by big models

https://www.oreilly.com/library/view/generative-ai-
on/9781098159214/ch04.html#:~:text=Quantization%20from%20fp32%20to%20fp16,shown%20in%20Figure%204%2D6

• Adam optimizer: 24 bytes per parameter for FP32

• 1 billion parameters: 

     24 GB for FP32, 12 GB for FP16, 16 GB for mixed-precision (FP32 for optimizer states, FP16 for the rest)

https://www.geeksforgeeks.org/adam-optimizer/

https://www.determined.ai/blog/act-mem-2

https://www.oreilly.com/library/view/generative-ai-on/9781098159214/ch04.html
https://www.oreilly.com/library/view/generative-ai-on/9781098159214/ch04.html
https://www.geeksforgeeks.org/adam-optimizer/
https://www.determined.ai/blog/act-mem-2


• ~6 weeks on 1 x DGX A100
• ~2 weeks on 4 x DGX A100

• ~5 years on 1 x DGX A100
• ~1 year on 4 x DGX A100

Weak scaling throughput for GPT models ranging from 1 billion to 1 trillion parameters. • ~69 years on 1 x DGX A100
• ~17 year on 4 x DGX A100

• ~65 weeks on 1 x DGX A100
• ~16 weeks on 4 x DGX A100

Narayanan, Deepak, et al. "Efficient large-scale language model training on GPU clusters using megatron-LM." Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis. 2021.

Scaling up of training is a form of time compression enabling faster time to convergence

Scale of compute with big models

~6 weeks on 1 x DGX A100
~2 weeks on 4 x DGX A100

~5 years on 1 x DGX A100
~1 year on 4 x DGX A100

~69 years on 1 x DGX A100
~17 year on 4 x DGX A100

~65 weeks on 1 x DGX A100
~16 weeks on 4 x DGX A100



Zero Redundancy Optimizer (1)
• Operate within the data parallel framework, optimizing memory usage by distributing model states across data 

parallel workers. 

• Partition tensors similar to tensor parallel. Each GPU stores only a slice of model parameters, gradients, and 
optimizer states.

• Communication: Each GPU receives other slices of parameters from other GPUs during the forward and 
backward pass. 

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/


Zero Redundancy Optimizer (2)

https://www.deepspeed.ai/tutorials/zero/ https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

• Further save GPU memory

     -- Mixed precision: weights and gradients stored in FP16, optimizer states stored in FP32

     -- Offloading to CPU

     -- Checkpointing activations

• ZeRO is implemented in Deepspeed.

• Quick and easy: only need to change a few configurations in the configuration JSON. 

Does not require a code redesign or model refactoring.

• ZeRO may or may not be faster depending on the situation and configuration.

• Fully Sharded Data Parallel (FSDP): another name for the ZeRO concept, implemented in PyTorch.

https://www.deepspeed.ai/tutorials/zero/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/


Offloading to CPU

Training times will be slower due to slow data movement

• Training times will be slower due to slow data movement.

• Overlap communication with computation.



Model Parallelism

❑Pipeline (Inter-Layer) Parallelism

• Split the model vertically 

• Only one or several layers of the model are placed on a single 
GPU. 

• Each GPU processes in parallel different stages of the pipeline 
and works on a small chunk of the batch.

❑  Tensor (Intra-Layer) Parallelism

• Split the model horizontally 

• Each tensor is split into multiple shards, and each shard resides 
on its designated GPU. 

• Each shard is computed in parallel on different GPUs and the 
results are synced at the end of the step.

https://huggingface.co/docs/transformers/v4.13.0/en/parallelism

https://huggingface.co/docs/transformers/v4.13.0/en/parallelism


• Naive pipeline parallel is 

sequentially processed.

• Leads to GPU 

underutilization.

https://fairscale.readthedocs.io/en/latest/deep_dive/pipeline_parallelism.html 

Pipeline Parallelism (1)

https://fairscale.readthedocs.io/en/latest/deep_dive/pipeline_parallelism.html
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Split batch into micro batches and pipeline executions to increase GPU utilization. 

GPU 1 1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 7 8 9

GPU 2 1 2 3 1 4 2 5 3 6 4 7 5 8 6 9 7 8 9

GPU 3 1 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 9

GPU 4 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Time

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡1

𝑡𝑝
=

𝑚∗𝑝∗(𝑡𝑓+𝑡𝑏)

𝑚+𝑝−1 (𝑡𝑓+𝑡𝑏)
=

𝑚∗𝑝

𝑚+𝑝−1

3 times speedup with 4 pipeline stages and 9 micro batches.  

Pipeline Parallelism (3)



Data and Pipeline Parallel (1)

❑  Hybrid parallel: model parallel is applied with data parallel to obtain further acceleration. 

https://www.deepspeed.ai/tutorials/pipeline/

• Data parallel

    + pipeline parallel

https://www.deepspeed.ai/tutorials/pipeline/


Data and Pipeline Parallel (2)
• Strategy for 4 GPUs: two-way data parallel, two pipeline stages, and eight micro-batches. 

• GPUs 0 and 2 are arranged in a pipeline and alternate forward (F) and backward (B) passes — 
the same for GPUs 1 and 3. 

• In the forward pass on a micro-batch, the activation is communicated to the next pipeline stage.

• In the backward pass on a micro-batch, the gradient with respect to the activation is communicated to 
the next pipeline stage. 

• Each backward pass accumulates gradients locally, then a GPU will all-reduce (AR) gradients with its 
data-parallel counterpart (0 - 1, 2 - 3). 

• Finally, the two pipeline stages update their model weights.



• Run the program. The total number of GPUs must be divisible by the number of pipeline stages.

deepspeed train.py --deepspeed_config=ds_config.json -p 2 --steps=200

net = PipelineModule(layers=join_layers(net),
                         loss_fn=torch.nn.CrossEntropyLoss(),
                         num_stages=args.pipeline_parallel_size,
                         partition_method=parameters,
                         activation_checkpoint_interval=0)

• Alexnet: 5 convolutional layers + 2 fully connected hidden layers + 1 fully connected output layer.

Data and Pipeline Parallel with Deepspeed

• Set up a pipeline module

net = AlexNet(num_classes=10)

• Set the micro batch size in the configuration JSON

"train_micro_batch_size_per_gpu" : 8,



❑ Use to scale beyond data parallelism

❑ Less restrictive on the batch size (avoids bubble issue in pipelining)

❑ Reduces memory proportional to the number of workers 

(model dependent)

❑ Sharded computations work well for large matrices (e.g. Transformers)

❑ Large communication overhead. Does not scale well beyond the node 

boundary.

GPU 0

GPU 1

Tensor Parallelism

The implementation of TP depends on the neural network architecture.
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Split the XA matrix multiplications along the columns of A, column parallel split
https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism

• When multiplying the input tensors with the first 

weight tensor, the matrix multiplication is equivalent 

to splitting the weight tensor column-wise, 

multiplying each column with the input separately, 

and then concatenating the separate outputs. 

• The outputs are then transferred from the GPUs and 

concatenated together to get the final result.

A simple example of tensor parallelism

https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism


Transformer architecture

Attention is all you need

• Positional embedding. A word  → A vector in high-dimensional space. 

• Extract Query, Key, and Value for search.

• Attention weighting/mask: cosine similarity between query and key

• Extract features with high attention: multiply attention mask and value. 

• A self-attention head. 

• Transformer: a neuro network built on multiple self-attention heads.

MIT course:nhttps://www.youtube.com/watch?v=dqoEU9Ac3ek

Successful in sequence modeling problems

• LLM: predict the next word. Bidirectional Encoder Representations from Transformers (BERT), 
Generative pre-trained transformer (GPT)

• Predict protein structure from DNA sequence (AlphaFold)

• Video/audio production

https://www.youtube.com/watch?v=dqoEU9Ac3ek


Tensor Parallel for Transformer (1)

• A transformer block consists of a feed-forward (MLP) layer and a self-attention layer.

• Split matrices in the MLP and self-attention layers.

• The matrix multiplications in both attention and MLP happen through sharded computations. 

Self-attentionMultilayer perceptron (MLP) 

https://arxiv.org/abs/1909.08053

https://arxiv.org/abs/1909.08053


Tensor Parallel for Transformer (2)

• Minimal communication:  4 x all-reduce in the forward and backward pass of a single tensor 
parallel transformer layer. 

• Larger communication overhead than DP or PP: more frequently. 

https://arxiv.org/abs/1909.08053

https://arxiv.org/abs/1909.08053


Data and Tensor Parallel with PyTorch (1)

• Hybrid parallel: Tensor Parallel within each node + Fully Sharded Data Parallel (FSDP) across nodes.

https://PyTorch.org/tutorials/intermediate/TP_tutorial.html

Parallelize_module(
  module=transformer_block,
  device_mesh=tp_mesh,
  parallelize_plan=layer_tp_plan

)

• Set up a tensor parallel module

• Llama2 (Large Language Model Meta AI): built on transformer architecture.

device_mesh = init_device_mesh("cuda", (dp_size, tp_size), mesh_dim_names=("dp", "tp"))

• Group GPUs for TP and DP 

• Create the model and send it to GPUs

model = Transformer.from_model_args(simple_llama2_config).to("cuda")

sharded_model = FSDP(model, device_mesh=dp_mesh, use_orig_params=True)

• Apply FSDP to the model 

https://pytorch.org/tutorials/intermediate/TP_tutorial.html


Data and Tensor Parallel with PyTorch (2)
•  TP plan: specify how to shard feed-forward and self-attention layers, column-wise or row-wise.   

https://PyTorch.org/tutorials/intermediate/TP_tutorial.html

• Communications (e.g. allreduce) will happen under the hood.

  layer_tp_plan = {
    "attention_norm": SequenceParallel(),
    "attention": PrepareModuleInput(
      input_layouts=(Shard(1), None),
      desired_input_layouts=(Replicate(), None),
    ),
    "attention.wq": ColwiseParallel(),
    "attention.wk": ColwiseParallel(),
    "attention.wv": ColwiseParallel(),
    "attention.wo": RowwiseParallel(output_layouts=Shard(1)),
    "ffn_norm": SequenceParallel(),
    "feed_forward": PrepareModuleInput(
      input_layouts=(Shard(1),),
      desired_input_layouts=(Replicate(),),
    ),
    "feed_forward.w1": ColwiseParallel(),
    "feed_forward.w2": RowwiseParallel(output_layouts=Shard(1)),
    "feed_forward.w3": ColwiseParallel(),
  }

• Sequence parallel: a variant of TP that performs sharded computations on layer normalization.

https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism


GPU Affinity grouping example for PP + TP + DP

gpu_0 gpu_4 gpu_8 gpu_12

gpu_1 gpu_5 gpu_9 gpu_13

gpu_2 gpu_6 gpu_10 gpu_14

gpu_3 gpu_7 gpu_11 gpu_15

Node_0 
(NVSwitch/Nvlink) 

Node_1
(NVSwitch/Nvlink) 

pipeline-model-parallel group 0

pipeline-model-parallel group 1

pipeline-model-parallel group 2

pipeline-model-parallel group 3
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https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html

2 nodes , 8 GPUs per node

• Tensor parallel = 2

• Pipeline parallel = 4

• Data parallel = 2

Data parallel
rank 1

Data parallel
rank 0

Hybrid model parallelism

• Communication overhead: PP < DP < TP

• Network: fast Nvlinks within a node, Infiniband across nodes

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html


Which Strategy To Use When

https://huggingface.co/docs/transformers/v4.13.0/en/parallelism

❑  Single-node Multi-GPU 

• The model fits into a single GPU:  DP (distributed DP)

• The model doesn’t fit into a single GPU: PP, TP, ZeRO, PP + DP, or TP + DP  

• The largest layer does not fit into a single GPU: TP or ZeRO. 

❑  Multi-node Multi-GPU 

• ZeRO (easy)

• PP + TP + DP (tricky but faster) 

➢  Best to experiment to find the winner on your particular setup.

https://huggingface.co/docs/transformers/v4.13.0/en/parallelism


What is not covered …

• Mixed-precision training
• Save GPU memory by offloading to CPU
• Activation Checkpointing
• Sequence parallelism
• Hybrid model parallelism: PP + TP + DP
• Distributed inference
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