
Parallel and Distributed
Deep Learning

Shaohao Chen
ORCD at MIT

Outline

❑ Basics of deep learning
❑ Parallel deep learning on a GPU
❑ Distributed deep learning on multiple GPUs
• Data parallelism

-- Zero Redundancy Optimizer
• Model parallelism

-- Pipeline parallelism
-- Tensor parallelism

Machine learning and deep learning

• Artificial intelligence

• Machine learning

Statistical algorithms

Learn from data

• Supervised learning:
classification, regression

• Unsupervised learning: clustering

• Deep learning: deep neural network

• Cornerstones of DL: learning algorithms, big data, and high-performance computing.

• Computer vision: Convolutional Neural Network (CNN)

• Natural Language Processing (NLP): Large Language Model (LLM), transformer architecture

Access to ORCD clusters
• Get started

https://orcd-docs.mit.edu/getting-started/

ssh <user>@eofe10.mit.edu

• Log in Engaging

• Get an interactive session and set up environment

srun -t 120 -n 4 --gres=gpu:4 -p mit_normal_gpu --pty bash

module load miniforge/23.11.0-0

Install PyTorch and Deepspeed
• Install PyTorch, Deepspeed, and dependencies.

conda create -n ds

source activate ds

conda install PyTorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.4 -c PyTorch -c

nvidia

pip install deepspeed

pip install datasets tensorboard transformers

pip install fire loguru sh matplotlib

Convolutional Neural Network (CNN)
• CNN for CIFAR10 in PyTorch

• Load training and test datasets: CIFAR10, normalize, using torchvision

• Define a CNN: convolutional layers, nonlinear ReLU activation, pooling, fully connected layers, softmax

https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/

Train a neural network
• Training: adjust the model to minimize a loss function.

• Loss function: cross entropy

• Train the network on the training data:

 -- forward + backward + optimize

 -- Backpropagation: computes the gradient of the loss function with respect to the weights, one layer
at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in
the chain rule of derivatives.

• Test the network on the test data

• Optimizer: Stochastic Gradient Descent (SGD)

• Training data: batch or mini-batch (a randomly-picked
subset of data), epoch (loop over all data).

Loss function

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Training on a GPU with PyTorch
• Define a CUDA device

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

• Send the model to the GPU

• Training process:

net.to(device)

for epoch in range(2): # loop over the dataset multiple times
 running_loss = 0.0
 for i, data in enumerate(trainloader, 0): # get a batch of data

 # Send a batch of data to the GPU at every step
 inputs, labels = data[0].to(device), data[1].to(device)

 optimizer.zero_grad() # initialize gradients
 outputs = net(inputs) # forward pass
 loss = nn.CrossEntropyLoss(outputs, labels) # define loss function
 loss.backward() # backward pass
 optimizer.step() # optimize

What happens under the hood?

What about parallel?

• Training a neural network involves large-scale linear algebra computations.

• When PyTorch is built with CUDA support, it dynamically links to cuDNN and cuBLAS libraries.

• Linear algebra computations are optimized and parallelized in cuBLAS and thus accelerated on GPUs.

What about other platforms or libraries?

• Tensorflow: Python or C API, a steeper learning curve, less friendly to researchers, easier with

Keras integration, better performance optimizations, better for developers.

• cuDNN: C API, a bridge between deep-learning platforms and GPUs.

Distributed Parallelism for Deep Learning

• Distributed on multiple GPUs.

• Data Parallelism

Each GPU gets a different batch of data

Process more data at the same time period.

Universal to different models. The model must fit within GPU memory.

• Model Parallelism

A model is too big to be stored on a GPU.

Partition the model on multiple GPUs.

Tricky to design and implement.

Data Parallelism

• Each GPU has a copy of the model

• Each GPU gets a different batch of data

• Data sampling is handled by a

Distributed Sampler

• Concurrently processing multiple

batches of data

Data Parallel training at large scale may affect model quality

Communication in data parallel

• Gradients on each GPU are
different because the input data
is different.

• Gradients from each GPU are
synchronized before the update.

• Synchronization is done with a
bucketed Ring-AllReduce
algorithm.

• Each GPU gets the averaged
gradient, then models are
updated locally.

• Overlap gradient computation
with communication so GPUs
are utilized efficiently.

Scaling with data parallel introduces communication overhead when syncing gradients

Distributed Data Parallel with PyTorch

• Spawn training processes on multiple GPUs

world_size = torch.cuda.device_count()

mp.spawn(main, args=(world_size, args.save_every, args.total_epochs, args.batch_size), nprocs=world_size)

model = torch.nn.Linear(20, 1)

https://PyTorch.org/tutorials/beginner/ddp_series_multigpu.html , https://PyTorch.org/docs/stable/notes/ddp.html

• Linear neural network

• Set up GPU ID

• Communication is under the hood. PyTorch calls NCCL.

self.model = DistributedDataParallel(model, device_ids=[gpu_id])

torch.cuda.set_device(rank)

• Apply DDP

https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html
https://pytorch.org/docs/stable/notes/ddp.html

Why big models?

• Transformer architecture

 -- Remove the sequential processing

dependency of RNNs, such as Long Short-

term Memory (LSTM).

 -- Enable language models to be trained

with parallelism

• A dramatic increase in model sizes after

the birth of Transformer.

Memory requirements by big models

https://www.oreilly.com/library/view/generative-ai-
on/9781098159214/ch04.html#:~:text=Quantization%20from%20fp32%20to%20fp16,shown%20in%20Figure%204%2D6

• Adam optimizer: 24 bytes per parameter for FP32

• 1 billion parameters:

 24 GB for FP32, 12 GB for FP16, 16 GB for mixed-precision (FP32 for optimizer states, FP16 for the rest)

https://www.geeksforgeeks.org/adam-optimizer/

https://www.determined.ai/blog/act-mem-2

https://www.oreilly.com/library/view/generative-ai-on/9781098159214/ch04.html
https://www.oreilly.com/library/view/generative-ai-on/9781098159214/ch04.html
https://www.geeksforgeeks.org/adam-optimizer/
https://www.determined.ai/blog/act-mem-2

• ~6 weeks on 1 x DGX A100
• ~2 weeks on 4 x DGX A100

• ~5 years on 1 x DGX A100
• ~1 year on 4 x DGX A100

Weak scaling throughput for GPT models ranging from 1 billion to 1 trillion parameters. • ~69 years on 1 x DGX A100
• ~17 year on 4 x DGX A100

• ~65 weeks on 1 x DGX A100
• ~16 weeks on 4 x DGX A100

Narayanan, Deepak, et al. "Efficient large-scale language model training on GPU clusters using megatron-LM." Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. 2021.

Scaling up of training is a form of time compression enabling faster time to convergence

Scale of compute with big models

~6 weeks on 1 x DGX A100
~2 weeks on 4 x DGX A100

~5 years on 1 x DGX A100
~1 year on 4 x DGX A100

~69 years on 1 x DGX A100
~17 year on 4 x DGX A100

~65 weeks on 1 x DGX A100
~16 weeks on 4 x DGX A100

Zero Redundancy Optimizer (1)
• Operate within the data parallel framework, optimizing memory usage by distributing model states across data

parallel workers.

• Partition tensors similar to tensor parallel. Each GPU stores only a slice of model parameters, gradients, and
optimizer states.

• Communication: Each GPU receives other slices of parameters from other GPUs during the forward and
backward pass.

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Zero Redundancy Optimizer (2)

https://www.deepspeed.ai/tutorials/zero/ https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

• Further save GPU memory

 -- Mixed precision: weights and gradients stored in FP16, optimizer states stored in FP32

 -- Offloading to CPU

 -- Checkpointing activations

• ZeRO is implemented in Deepspeed.

• Quick and easy: only need to change a few configurations in the configuration JSON.

Does not require a code redesign or model refactoring.

• ZeRO may or may not be faster depending on the situation and configuration.

• Fully Sharded Data Parallel (FSDP): another name for the ZeRO concept, implemented in PyTorch.

https://www.deepspeed.ai/tutorials/zero/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

Offloading to CPU

Training times will be slower due to slow data movement

• Training times will be slower due to slow data movement.

• Overlap communication with computation.

Model Parallelism

❑Pipeline (Inter-Layer) Parallelism

• Split the model vertically

• Only one or several layers of the model are placed on a single
GPU.

• Each GPU processes in parallel different stages of the pipeline
and works on a small chunk of the batch.

❑ Tensor (Intra-Layer) Parallelism

• Split the model horizontally

• Each tensor is split into multiple shards, and each shard resides
on its designated GPU.

• Each shard is computed in parallel on different GPUs and the
results are synced at the end of the step.

https://huggingface.co/docs/transformers/v4.13.0/en/parallelism

https://huggingface.co/docs/transformers/v4.13.0/en/parallelism

• Naive pipeline parallel is

sequentially processed.

• Leads to GPU

underutilization.

https://fairscale.readthedocs.io/en/latest/deep_dive/pipeline_parallelism.html

Pipeline Parallelism (1)

https://fairscale.readthedocs.io/en/latest/deep_dive/pipeline_parallelism.html

1

1

1

1 1

GPU 1

GPU 2

GPU 3

GPU 4

Time

Split batch into micro batches and pipeline executions

1a 1b 1c 1d 1a 1b 1c 1d 2a 2b

1a 1b 1c 1d 1a 1b 1c 1d 2a

1a 1b 1c 1d 1a 1b 1d 1d

1a 1a 1b 1b 1c 1c 1d 1d

Time

GPU 1

GPU 2

GPU 3

GPU 4

Pipeline Parallelism (2)

Forward

Backward

Split batch into micro batches and pipeline executions to increase GPU utilization.

GPU 1 1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 7 8 9

GPU 2 1 2 3 1 4 2 5 3 6 4 7 5 8 6 9 7 8 9

GPU 3 1 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 9

GPU 4 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Time

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡1

𝑡𝑝
=

𝑚∗𝑝∗(𝑡𝑓+𝑡𝑏)

𝑚+𝑝−1 (𝑡𝑓+𝑡𝑏)
=

𝑚∗𝑝

𝑚+𝑝−1

3 times speedup with 4 pipeline stages and 9 micro batches.

Pipeline Parallelism (3)

Data and Pipeline Parallel (1)

❑ Hybrid parallel: model parallel is applied with data parallel to obtain further acceleration.

https://www.deepspeed.ai/tutorials/pipeline/

• Data parallel

 + pipeline parallel

https://www.deepspeed.ai/tutorials/pipeline/

Data and Pipeline Parallel (2)
• Strategy for 4 GPUs: two-way data parallel, two pipeline stages, and eight micro-batches.

• GPUs 0 and 2 are arranged in a pipeline and alternate forward (F) and backward (B) passes —
the same for GPUs 1 and 3.

• In the forward pass on a micro-batch, the activation is communicated to the next pipeline stage.

• In the backward pass on a micro-batch, the gradient with respect to the activation is communicated to
the next pipeline stage.

• Each backward pass accumulates gradients locally, then a GPU will all-reduce (AR) gradients with its
data-parallel counterpart (0 - 1, 2 - 3).

• Finally, the two pipeline stages update their model weights.

• Run the program. The total number of GPUs must be divisible by the number of pipeline stages.

deepspeed train.py --deepspeed_config=ds_config.json -p 2 --steps=200

net = PipelineModule(layers=join_layers(net),
 loss_fn=torch.nn.CrossEntropyLoss(),
 num_stages=args.pipeline_parallel_size,
 partition_method=parameters,
 activation_checkpoint_interval=0)

• Alexnet: 5 convolutional layers + 2 fully connected hidden layers + 1 fully connected output layer.

Data and Pipeline Parallel with Deepspeed

• Set up a pipeline module

net = AlexNet(num_classes=10)

• Set the micro batch size in the configuration JSON

"train_micro_batch_size_per_gpu" : 8,

❑ Use to scale beyond data parallelism

❑ Less restrictive on the batch size (avoids bubble issue in pipelining)

❑ Reduces memory proportional to the number of workers

(model dependent)

❑ Sharded computations work well for large matrices (e.g. Transformers)

❑ Large communication overhead. Does not scale well beyond the node

boundary.

GPU 0

GPU 1

Tensor Parallelism

The implementation of TP depends on the neural network architecture.

28

Split the XA matrix multiplications along the columns of A, column parallel split
https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism

• When multiplying the input tensors with the first

weight tensor, the matrix multiplication is equivalent

to splitting the weight tensor column-wise,

multiplying each column with the input separately,

and then concatenating the separate outputs.

• The outputs are then transferred from the GPUs and

concatenated together to get the final result.

A simple example of tensor parallelism

https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism

Transformer architecture

Attention is all you need

• Positional embedding. A word → A vector in high-dimensional space.

• Extract Query, Key, and Value for search.

• Attention weighting/mask: cosine similarity between query and key

• Extract features with high attention: multiply attention mask and value.

• A self-attention head.

• Transformer: a neuro network built on multiple self-attention heads.

MIT course:nhttps://www.youtube.com/watch?v=dqoEU9Ac3ek

Successful in sequence modeling problems

• LLM: predict the next word. Bidirectional Encoder Representations from Transformers (BERT),
Generative pre-trained transformer (GPT)

• Predict protein structure from DNA sequence (AlphaFold)

• Video/audio production

https://www.youtube.com/watch?v=dqoEU9Ac3ek

Tensor Parallel for Transformer (1)

• A transformer block consists of a feed-forward (MLP) layer and a self-attention layer.

• Split matrices in the MLP and self-attention layers.

• The matrix multiplications in both attention and MLP happen through sharded computations.

Self-attentionMultilayer perceptron (MLP)

https://arxiv.org/abs/1909.08053

https://arxiv.org/abs/1909.08053

Tensor Parallel for Transformer (2)

• Minimal communication: 4 x all-reduce in the forward and backward pass of a single tensor
parallel transformer layer.

• Larger communication overhead than DP or PP: more frequently.

https://arxiv.org/abs/1909.08053

https://arxiv.org/abs/1909.08053

Data and Tensor Parallel with PyTorch (1)

• Hybrid parallel: Tensor Parallel within each node + Fully Sharded Data Parallel (FSDP) across nodes.

https://PyTorch.org/tutorials/intermediate/TP_tutorial.html

Parallelize_module(
 module=transformer_block,
 device_mesh=tp_mesh,
 parallelize_plan=layer_tp_plan

)

• Set up a tensor parallel module

• Llama2 (Large Language Model Meta AI): built on transformer architecture.

device_mesh = init_device_mesh("cuda", (dp_size, tp_size), mesh_dim_names=("dp", "tp"))

• Group GPUs for TP and DP

• Create the model and send it to GPUs

model = Transformer.from_model_args(simple_llama2_config).to("cuda")

sharded_model = FSDP(model, device_mesh=dp_mesh, use_orig_params=True)

• Apply FSDP to the model

https://pytorch.org/tutorials/intermediate/TP_tutorial.html

Data and Tensor Parallel with PyTorch (2)
• TP plan: specify how to shard feed-forward and self-attention layers, column-wise or row-wise.

https://PyTorch.org/tutorials/intermediate/TP_tutorial.html

• Communications (e.g. allreduce) will happen under the hood.

 layer_tp_plan = {
 "attention_norm": SequenceParallel(),
 "attention": PrepareModuleInput(
 input_layouts=(Shard(1), None),
 desired_input_layouts=(Replicate(), None),
),
 "attention.wq": ColwiseParallel(),
 "attention.wk": ColwiseParallel(),
 "attention.wv": ColwiseParallel(),
 "attention.wo": RowwiseParallel(output_layouts=Shard(1)),
 "ffn_norm": SequenceParallel(),
 "feed_forward": PrepareModuleInput(
 input_layouts=(Shard(1),),
 desired_input_layouts=(Replicate(),),
),
 "feed_forward.w1": ColwiseParallel(),
 "feed_forward.w2": RowwiseParallel(output_layouts=Shard(1)),
 "feed_forward.w3": ColwiseParallel(),
 }

• Sequence parallel: a variant of TP that performs sharded computations on layer normalization.

https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism

GPU Affinity grouping example for PP + TP + DP

gpu_0 gpu_4 gpu_8 gpu_12

gpu_1 gpu_5 gpu_9 gpu_13

gpu_2 gpu_6 gpu_10 gpu_14

gpu_3 gpu_7 gpu_11 gpu_15

Node_0
(NVSwitch/Nvlink)

Node_1
(NVSwitch/Nvlink)

pipeline-model-parallel group 0

pipeline-model-parallel group 1

pipeline-model-parallel group 2

pipeline-model-parallel group 3

T
e
n
so

r-
m

o
d
el

-
p
a
ra

ll
e
l-

gr
ou

p
 0

T
e
n
so

r-
m

o
d
el

-
p
a
ra

ll
e
l-

gr
ou

p
 1

T
e
n
so

r-
m

o
d
el

-
p
a
ra

ll
e
l-

gr
ou

p
 2

T
e
n
so

r-
m

o
d
el

-
p
a
ra

ll
e
l-

gr
ou

p
 3

T
e
n
so

r-
m

o
d
el

-
p
a
ra

ll
e
l-

gr
ou

p
 4

T
e
n
so

r-
m

o
d
el

-
p
a
ra

ll
e
l-

gr
ou

p
 5

T
e
n
so

r-
m

o
d
el

-
p
a
ra

ll
e
l-

gr
ou

p
 6

T
e
n
so

r-
m

o
d
el

-
p
a
ra

ll
e
l-

gr
ou

p
 7

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html

2 nodes , 8 GPUs per node

• Tensor parallel = 2

• Pipeline parallel = 4

• Data parallel = 2

Data parallel
rank 1

Data parallel
rank 0

Hybrid model parallelism

• Communication overhead: PP < DP < TP

• Network: fast Nvlinks within a node, Infiniband across nodes

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html

Which Strategy To Use When

https://huggingface.co/docs/transformers/v4.13.0/en/parallelism

❑ Single-node Multi-GPU

• The model fits into a single GPU: DP (distributed DP)

• The model doesn’t fit into a single GPU: PP, TP, ZeRO, PP + DP, or TP + DP

• The largest layer does not fit into a single GPU: TP or ZeRO.

❑ Multi-node Multi-GPU

• ZeRO (easy)

• PP + TP + DP (tricky but faster)

➢ Best to experiment to find the winner on your particular setup.

https://huggingface.co/docs/transformers/v4.13.0/en/parallelism

What is not covered …

• Mixed-precision training
• Save GPU memory by offloading to CPU
• Activation Checkpointing
• Sequence parallelism
• Hybrid model parallelism: PP + TP + DP
• Distributed inference

	Slide 1: Parallel and Distributed Deep Learning
	Slide 2: Outline
	Slide 3: Machine learning and deep learning
	Slide 4: Access to ORCD clusters
	Slide 5: Install PyTorch and Deepspeed
	Slide 6: Convolutional Neural Network (CNN)
	Slide 7: Train a neural network
	Slide 8: Training on a GPU with PyTorch
	Slide 9: What happens under the hood?
	Slide 10: Distributed Parallelism for Deep Learning
	Slide 11: Data Parallelism
	Slide 12
	Slide 13: Distributed Data Parallel with PyTorch
	Slide 14: Why big models?
	Slide 15: Memory requirements by big models
	Slide 16
	Slide 17: Zero Redundancy Optimizer (1)
	Slide 18: Zero Redundancy Optimizer (2)
	Slide 19: Offloading to CPU
	Slide 20: Model Parallelism
	Slide 21: Pipeline Parallelism (1)
	Slide 22: Pipeline Parallelism (2)
	Slide 23
	Slide 24: Data and Pipeline Parallel (1)
	Slide 25: Data and Pipeline Parallel (2)
	Slide 26: Data and Pipeline Parallel with Deepspeed
	Slide 27: Tensor Parallelism
	Slide 28
	Slide 29: Transformer architecture
	Slide 30: Tensor Parallel for Transformer (1)
	Slide 31: Tensor Parallel for Transformer (2)
	Slide 32: Data and Tensor Parallel with PyTorch (1)
	Slide 33: Data and Tensor Parallel with PyTorch (2)
	Slide 34: Hybrid model parallelism
	Slide 35: Which Strategy To Use When
	Slide 36: What is not covered …

