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J Basics of deep learning
J Parallel deep learning on a GPU
 Distributed deep learning on multiple GPUs
* Data parallelism

-- Zero Redundancy Optimizer
* Model parallelism

-- Pipeline parallelism

-- Tensor parallelism



Artificial intelligence

" — — — — — ARTIFICIAL INTELLIGENCE
. . / - A technique which enables machines
Machine learni ng Artificial Intelligence - -~ to mimic human behaviour
-~
Statistical algorithms £
Machine Learning
Learn from data MACHINE LEARNING
__________ Subset of Al technique which use
Su pervis ed lea rn | ng . statistical methods to enable machines
. . ‘ . to improve with experience
classification, regression
Unsupervised learning: clustering -
< DEEP LEARNING
N~ Subset of ML which make the

computation of multi-layer neural
network feasible

Deep learning: deep neural network
Cornerstones of DL: learning algorithms, big data, and high-performance computing.
Computer vision: Convolutional Neural Network (CNN)

Natural Language Processing (NLP): Large Language Model (LLM), transformer architecture



https://orcd-docs.mit.edu/getting-started/

ssh <user>@eofe10.mit.edu

srun -t 120 -n 4 --gres=gpu:4 -p mit_normal_gpu --pty bash
module load miniforge/23.11.0-0




* |Install PyTorch, Deepspeed, and dependencies.

conda create -n ds

source activate ds

conda install PyTorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.4 -c PyTorch -c

nvidia
pip install deepspeed

pip install datasets tensorboard transformers

pip install fire loguru sh matplotlib



Convolutional Neural Network (CNN)

* CNN for CIFAR10in PyTorch

* Loadtraining and test datasets: CIFAR10, normalize, using torchvision

* Define a CNN: convolutional layers, nonlinear ReLU activation, pooling, fully connected layers, softmax
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https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/

* Training: adjust the model to minimize a loss function. u

* Lossfunction: cross entropy Loss function
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- Nz [yn log g, + (1 — y,) log(1 — y,) :
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* Optimizer: Stochastic Gradient Descent (SGD)

* Training data: batch or mini-batch (a randomly-picked
subset of data), epoch (loop over all data). sl i

* Train the network on the training data:

-10 1 1 1 1 1 1
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-- forward + backward + optimize

-- Backpropagation: computes the gradient of the loss function with respect to the weights, one layer
at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in
the chain rule of derivatives.

e Testthe network on the test data

https://en.wikipedia.org/wiki/Stochastic_gradient_descent



https://en.wikipedia.org/wiki/Stochastic_gradient_descent

 Define a CUDA device

device = torch.device( if torch.cuda.is_available() else

net.to(device)

e Send the model to the GPU

* Training process:

for epoch in range(2): # loop over the dataset multiple times

running_loss =
for i, data in enumerate(trainloader, 0): # get a batch of data

# Send a batch of data to the GPU at every step
inputs, labels = data[0].to(device), data[1].to(device)

optimizer.zero_grad() # initialize gradients

outputs = net(inputs) # forward pass

loss = nn.CrossEntropyLoss(outputs, labels) # define loss function
loss.backward() # backward pass

optimizer.step() # optimize




What about parallel?

* Training a neural network involves large-scale linear algebra computations.
* When PyTorch is built with CUDA support, it dynamically links to cuDNN and cuBLAS libraries.

* Linear algebra computations are optimized and parallelized in cuBLAS and thus accelerated on GPUs.

What about other platforms or libraries?

* Tensorflow: Python or C API, a steeper learning curve, less friendly to researchers, easier with

Keras integration, better performance optimizations, better for developers.

* cuDNN: C API, a bridge between deep-learning platforms and GPUs.



e Distributed on multiple GPUs.

 Data Parallelism
Each GPU gets a different batch of data
Process more data at the same time period.

Universal to different models. The model must fit within GPU memory.

* Model Parallelism
A model is too big to be stored on a GPU.
Partition the model on multiple GPUs.

Tricky to design and implement.



Each GPU has a copy of the model
Each GPU gets a different batch of data

Data sampling is handled by a

Distributed Sampler

Concurrently processing multiple

batches of data

Data Parallel training at large scale may affect model quality
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Gradients on each GPU are
different because the input data
is different.

Gradients from each GPU are
synchronized before the update.

Synchronization is done with a
bucketed Ring-AllReduce
algorithm.

Each GPU gets the averaged
gradient, then models are
updated locally.

Overlap gradient computation
with communication so GPUs
are utilized efficiently.

Scaling with data parallel introduces communication overhead when syncing gradients
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model = torch.nn.Linear(20, 1)

e Setup GPUID torch.cuda.set_device(rank)

* Apply DDP self.model = DistributedDataParallel(model, device_ids=[gpu_id])

* Spawn training processes on multiple GPUs

world_size = torch.cuda.device_count()

mp.spawn(main, args=(world_size, args.save_every, args.total_epochs, args.batch_size), nprocs=world_size)

e Communication is under the hood. PyTorch calls NCCL.

https://PyTorch.org/tutorials/beginner/ddp_series_multigpu.html , https://PyTorch.org/docs/stable/notes/ddp.html


https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html
https://pytorch.org/docs/stable/notes/ddp.html

e Transformer architecture

-- Remove the sequential processing
dependency of RNNs, such as Long Short-
term Memory (LSTM).

-- Enable language models to be trained

with parallelism

e A dramatic increase in model sizes after

the birth of Transformer.

Training Compute (petaFLOPS)
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Figure 3. Compute required for training transformer models.
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« Adam optimizer: 24 bytes per parameter for FP32

States Bytes per parameter

Model parameters (weights) 4 bytes per parameter

Adam optimizer (2 states) 8 bytes per parameter

Gradients 4 bytes per parameter

Activations and temp memory (variable size) 8 bytes per parameter (high-end estimate)
TOTAL = 4 + 20 bytes per parameter

« 1 billion parameters:

24 GB for FP32, 12 GB for FP16, 16 GB for mixed-precision (FP32 for optimizer states, FP16 for the rest)

https://www.oreilly.com/library/view/generative-ai- https://www.geeksforgeeks.org/adam-optimizer/

on/9781098159214/ch04.html#: ~: text=Quantization%20from%20fp32%20t0%20fp16,shown%20in%20Figure%204%2D6



https://www.oreilly.com/library/view/generative-ai-on/9781098159214/ch04.html
https://www.oreilly.com/library/view/generative-ai-on/9781098159214/ch04.html
https://www.geeksforgeeks.org/adam-optimizer/
https://www.determined.ai/blog/act-mem-2

~6 weeks on 1 x DGX A100
~2 weeks on 4 x DGX A100

~65 weeks on 1 x DGX A100

__—" ~16 weeks on 4 x DGX A100

, ~5yearson1xDGXA100

~1 year on 4 x DGX A100

Model | Attention | Hidden | Number “““t‘“:; Modekparallel | Number |Microbatch | Batch t;g‘mﬁ mff :;;E:a
size | heads | sze |oflayers | i) size of GPUs size size per GPU m“ mmecam SetaFLOP/s
1.7B 24 2304 24 17 1 32 16 512 137 44% 44
368 32 3072 30 36 2 64 16 512 138 44% 8.8
7.5B 32 4096 36 75 4 128 16 512 142 46% 18.2
188 43 6144 40 18.4 8 256 8 1024 135 43% 346
30B 64 8192 48 30 1 16 512 4 1536 138 44% 70.8
768 80 10240 60 76.1 32 1024 > 1792 140 45% 1438
1458 96 12288 80 1456 64 1536 2 2304 148 47% 2271

T 3108 128 | 16384 96 310.1 128 1920 1 2160 155 50% 297.4
5308 128 | 20480 | 105 520.6 280 2520 1 2520 163 52% 4102
1T 160 | 25600 | 128 1008.0 512 3072 1 3072 163 52% 502.0

Weak scaling throughput for GPT models ranging from 1 billion to 1 trillion parameters.

~69 years on 1 x DGX A100
~17 year on 4 x DGX A100

Narayanan, Deepak, et al. "Efficient large-scale language model training on GPU clusters using megatron-LM." Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. 2021.



* Operate within the data parallel framework, optimizing memory usage by distributing model states across data
parallel workers.

* Partition tensors similar to tensor parallel. Each GPU stores only a slice of model parameters, gradients, and
optimizer states.

* Communication: Each GPU receives other slices of parameters from other GPUs during the forward and
backward pass.

Memory Consumption Comm

. = Volume
;i Formulation Specific Example
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https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Further save GPU memory

-- Mixed precision: weights and gradients stored in FP16, optimizer states stored in FP32
-- Offloading to CPU

-- Checkpointing activations

ZeRO isimplemented in Deepspeed.

Quick and easy: only need to change a few configurations in the configuration JSON.

Does not require a code redesign or model refactoring.
ZeRO may or may not be faster depending on the situation and configuration.

Fully Sharded Data Parallel (FSDP): another name for the ZeRO concept, implemented in PyTorch.

https://www.deepspeed.ai/tutorials/zero/ https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/



https://www.deepspeed.ai/tutorials/zero/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

GPU

Hundreds of GB Tens of GB

CPU Memory GPU Memory

Offload CPU tensors not used in computation form GPU to CPU

« Training times will be slower due to slow data movement.

« Overlap communication with computation.



 Pipeline (Inter-Layer) Parallelism

Split the model vertically

Only one or several layers of the model are placed on a single
GPU.

Each GPU processes in parallel different stages of the pipeline
and works on a small chunk of the batch.

O Tensor (Intra-Layer) Parallelism

Split the model horizontally

Each tensor is split into multiple shards, and each shard resides
on its designated GPU.

Each shard is computed in parallel on different GPUs and the
results are synced at the end of the step.

//A.‘1'//A t%:;’é:}\\
O 00

A o
i V «".,»
XA ::0::50

v \533‘ ;‘g. 4% %t “*Ql'v,.v‘*’é
e
L) Jl) Q ‘“

o \\ // \\ / AN
QW Se\'e o‘\\V//'

2\ A\\

AV

‘(//A N7/ A\\\
STAYY «wt‘si AN

‘v!’ \\? “\ .7 ’V'
'\%3%"‘{ il 0 8 yiis O S\ "u’:“\"::

‘b

)
7

/ .
.0, ,“' 0"5{0\?‘;’.’9;‘\
\' '0:‘, ; b o‘ & \
Q) A “§ }0‘ ‘ :\' V’ \
A}\\\'ﬂ u\.oz',; ‘\\‘:0-0.0' "/:0,
SO\S 0 /14 WO >\

N K '\\'/. \
‘ //0“‘ @ /IO s‘ V/
@ \.y, \\. /


https://huggingface.co/docs/transformers/v4.13.0/en/parallelism

Pipeline Parallelism (1)

» Naive pipeline parallel is
sequentially processed.
* Leads to GPU PO

underutilization.

{ SRS =S o

Forward

Backward

OUTPUT
ﬁ

Update



https://fairscale.readthedocs.io/en/latest/deep_dive/pipeline_parallelism.html

GPU 1
GPU 2
GPU 3
GPU 4

GPU 1
GPU 2
GPU 3
GPU 4

Time ——
Ta 1b 1c 1d
Ta 1b 1c 1d

Ta 1b 1c 1d

T1a

1b

Split batch into micro batches and pipeline executions

Forward

Backward



GPU 1
GPU 2
GPU 3
GPU 4

Split batch into micro batches and pipeline executions to increase GPU utilization.

Time —

total time = (m +p — 1) x (t; + t3) bubble ti .
ideal time =m x (t5 + tp) bubble time overhead = ———— o — £~

ideal time m
bubble time = (p — 1) X (¢ + t3)

p : number of pipeline stages t; _ mxpx(te+tp) mxp

speedup = — = =
m : number of micro batches p P tp (m+p-1)(tg+tp) m+p-1

ts : forward step time

tp : backward step time 3 times speedup with 4 pipeline stages and 9 micro batches.



Data and Pipeline Parallel (1)

) Hybrid parallel: model parallelis applied with data parallel to obtain further acceleration.

* Data parallel

+ pipeline parallel
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https://www.deepspeed.ai/tutorials/pipeline/

Data and Pipeline Parallel (2)

« Strategy for 4 GPUs: two-way data parallel, two pipeline stages, and eight micro-batches.

* GPUs 0 and 2 are arranged in a pipeline and alternate forward (F) and backward (B) passes —
the same for GPUs 1 and 3.

* Inthe forward pass on a micro-batch, the activation is communicated to the next pipeline stage.

* |Inthe backward pass on a micro-batch, the gradient with respect to the activation is communicated to
the next pipeline stage.

* Each backward pass accumulates gradients locally, then a GPU will all-reduce (AR) gradients with its
data-parallel counterpart (0 -1, 2 - 3).

* Finally, the two pipeline stages update their model weights.

GPU-3 B Data Parallel 1
GPU-1 Rank 1
GPU-2 B Data Parallel
GPU-0 Rank O

Time



5 convolutional layers + 2 fully connected hidden layers + 1 fully connected output layer.

net = AlexNet(hnum_classes=10)

 Setup apipeline module

net = PipelineModule(layers=join_layers(net),
loss_fn=torch.nn.CrossEntropylLoss(),

num_stages=args.pipeline_parallel_size,
partition_method=parameters,
activation_checkpoint_interval=0)

e Set the micro batch size in the configuration JSON

"train_micro_batch_size_per_gpu": 8,

* Runthe program. The total number of GPUs must be divisible by the number of pipeline stages.

deepspeed train.py --deepspeed_config=ds_config.json -p 2 --steps=200




\ " : :.: K7 X
W @ W)

/ ' ‘ V ’, ‘o 77 A
A“ '/, & . ll[' \“\\ . .,"t" ‘\ //;‘:

\ .'«,'A‘ 'l’?%‘l\ /', ‘
'\\ RN V’

AV

Use to scale beyond data parallelism
Less restrictive on the batch size (avoids bubble issue in pipelining)

Reduces memory proportional to the number of workers

(model dependent)
Sharded computations work well for large matrices (e.g. Transformers)

Large communication overhead. Does not scale well beyond the node

boundary.

The implementation of TP depends on the neural network architecture.



inputs weights outputs

* When multiplying the input tensors with the first 4 N

weight tensor, the matrix multiplication is equivalent

to splitting the weight tensor column-wise,

multiplying each column with the input separately, N\ /

and then concatenating the separate outputs.

Is equivalent to
* The outputs are then transferred from the GPUs and - N

concatenated together to get the final result. Y1

Y3
X Al A2 A3
- J



https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism

Attention is all you need - e =
* Positional embedding. Aword = Avector in high-dimensional space. s°ﬂ;“a"

» Extract Query, Key, and Value for search. S°:'°

« Attention weighting/mask: cosine similarity between query and key MatMul - -

* Extractfeatures with high attention: multiply attention mask and value.

A self-attention head.

* Transformer: a neuro network built on multiple self-attention heads.

\_ Positional Encoding

Successfulin sequence modeling problems

* LLM: predict the next word. Bidirectional Encoder Representations from Transformers (BERT),
Generative pre-trained transformer (GPT)

* Predict protein structure from DNA sequence (AlphaFold)

* Video/audio production


https://www.youtube.com/watch?v=dqoEU9Ac3ek

* Atransformer block consists of a feed-forward (MLP) layer and a self-attention layer.
* Split matrices in the MLP and self-attention layers.

* The matrix multiplications in both attention and MLP happen through sharded computations.
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https://arxiv.org/abs/1909.08053

* Minimal communication: 4 x all-reduce in the forward and backward pass of a single tensor
parallel transformer layer.
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2 All-Reduce 2 All-Reduce
(forward + backward) (forward + backward)

* Larger communication overhead than DP or PP: more frequently.


https://arxiv.org/abs/1909.08053

(Large Language Model Meta Al): built on transformer architecture.
Tensor Parallel within each node + Fully Sharded Data Parallel (FSDP) across nodes.

Group GPUs for TP and DP

device_mesh = init_device_mesh( , (dp_size, tp_size), mesh_dim_names=(

Create the model and send it to GPUs

model = Transformer.from_model_args(simple_llama2_config).to(

Set up atensor parallel module Parallelize_module(

module=transformer_block,
device_mesh=tp_mesh,
parallelize_plan=layer tp plan

)

Apply FSDP to the model

sharded_model = FSDP(model, device_mesh=dp_mesh, use_orig_params=True)

https://PvTorch.org/tutorials/intermediate/TP_tutorial.html


https://pytorch.org/tutorials/intermediate/TP_tutorial.html

: specify how to shard feed-forward and self-attention layers, column-wise or row-wise.

layer_tp_plan = {

: SequenceParallel(),
: PrepareModulelnput(
input_layouts=(Shard(1), None),
desired_input_layouts=(Replicate(), None),

),

: ColwiseParallel(),

: ColwiseParallel(),

: ColwiseParallel(),

: RowwiseParallel(output_layouts=Shard(1)),

: SequenceParallel(),
: PrepareModulelnput(

input_layouts=(Shard(1),),
desired_input_layouts=(Replicate(),),

),

: ColwiseParallel(),
: RowwiseParallel(output_layouts=Shard(1)),

: ColwiseParallel(),

a variant of TP that performs sharded computations on layer normalization.

Communications (e.g. allreduce) will happen under the hood.

https://PvTorch.org/tutorials/intermediate/TP_tutorial.html


https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism

GPU Affinity grouping example for PP + TP + DP

gpu 0 : o gpu_4 ~ gpu_8 < gpu_12 © .
T2 T To g | pipeline-model-parallel group 0
S 3 33 83 3 3
— ° e 8 s
o= 9% g 3Z
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£ & i (] s}
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gpu3 g gpu_7 P8 gpu_11 P g gpu_15 2s | pipeline-model-parallel group 3
\ J | J
| |
Node_0 Node_1 2 nodes , 8 GPUs per node
(NVSwitch /Nvlink) (NVSwitch /Nvlink)

» Tensor parallel = 2

Communication overhead: PP <DP < TP

» Pipeline parallel = 4

Network: fast Nvlinks within a node, Infiniband across nodes



https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html

O Single-node Multi-GPU

* The model fits into a single GPU: DP (distributed DP)

* The model doesn’tfitinto a single GPU: PP, TP, ZeRO, PP + DP, or TP + DP
* The largest layer does not fit into a single GPU: TP or ZeRO.

O Multi-node Multi-GPU
* /eRO (easy)
* PP+ TP+ DP (tricky but faster)

» Best to experiment to find the winner on your particular setup.


https://huggingface.co/docs/transformers/v4.13.0/en/parallelism

* Mixed-precision training

 Save GPU memory by offloading to CPU
* Activation Checkpointing

 Sequence parallelism

* Hybrid model parallelism: PP + TP + DP

e Distributed inference
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